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Recent experience with Formal
Methods (FM) in the Software Quality
Assurance Section at the Jet Propulsion
1.ab is presented. An integrated
Formal Method process is presented to
show how related existing require-
ments analysis and FM techniques
complement one another. Example
application Of FM techniques such as
formal specifications and specification
animators arc presented. The authors
suggest that the quality assurance
organization is a natural home for the
Formal Methods specialist, whose
expertise can then be used to best
advantage across a range of projects.

1. introduction

Recent studies of critical software
subsystems have provided data which
expose the software requirements
guality problem facing current and
future projects. The early stages of the
software life cycle are especially prone
to errors which can have a lasting
influence on the reliability, cost, and
safety of a system.

} highlights of these studies include the
following:

. The highest density of major
defects found through the use of
software inspections was during
the requirements phase (an
average of 1 major defect found
per 3 pagesof requirements

documentation). This was 7 times
higher than the density of major

defects found in code inspections

Most hazardous software safety
errors found during system
integration and test of two
unmanned spacecraft were the
result of requirements
discrepancies or interface
specifications.

Requirements errors are between
10 and 100 times more costly to fix
at later phases of the software life
cycle than at the requiremcents
phase itself 1,26,

. One study found that the most
frequent (30%) of all errors could
be attributed to the faulty
statement or understanding of
requirements and specification’
while another found that early life
cycle errors are the most likely to
lead to catastrophic failures’.

The.w problems indicate the need to
advance the state-of-the-practice in the
arcaof software requirements
chginecring. The later life cycle phases
of detailed design and code are
already supported by well defined
methods, languages, and tools.
However, current requirements
engineering practices are mired in the
use of ad hoc methods, ambiguous
natural language specifications, and
little or no automated support.



for example, arc the best candidates
for the most rigorous application of
Formal Methods. Figure 1 shows level
of formality integrated with the
Software Engineering Institute (SEI)
Maturity Model °1°. The basc and left-
hand branch in Figure 1 shows the five
levels of SEl's Process Maturity Model,
which indicates an organization's
capability to produce quality software
products. A few NASA contractors
have been rated in the 3-5range of
SEI's model (3to 5 in Figure 1). For
t hese organi zations, a more formal
approach could be used to break
through their current software quality
ceiling. The right-hand branch of
Figure 1 (levels 4b to7b) shows
increasing levels of formality which
can be appliedto critical software
projects in either forward or reverse
engineering situations.  Structure
Modeling (4b) refersto using graphical
models to determine the inter-
relationship between requirements;
Formal Specifications (5b) is the use of
formal languages and associated tools
to state and check requirements;
specification animation (6b) enables
the formal specification to be viewed
dynamically; proofs (7b) can
demonstrate whether the specifications
arc sufficient to ensure critical
properties.

The fraction of the application to be
subjected toFM is also a function of
application criticality and available
resources. Finally, the life cycle phase
of application development in which
Formal Methods is applied determines
which FM techniques are appropriate.
For example, requirements analysis
uses different tools from code
verification. Note that life cycle is
used in a broad sense, and that FM is
not restricted to any specific life cycle
model.

While the most rigorous assurance of
correctness of specification comes from
applying FM at the highest level of
formality (i.e., proof of claims or

properties concerning the
specification), significant benefit to the
development process can be attained
from less formal aspects of the
methodology. First, simply de-scribing
a system or a critical subpart in a
formal notation introduces a more
rigorous way of thinking about the
system. Second, type checking in a
formal specification language subjects
a specification to more rigorous
scrutiny than merely checking that all
expressions are of the correct type. In
fact, type checking may give rise to
type correctness conditions, or logical
assertions about the declaration and
usage of types in the specification
which must be proven true before the
specificat ion can be considered type-
correct. Finally, specification
animation, a technique for developing
an executable program that exhibits
the high-level behavior implied by the
formal specification is often an
effective informal alternative to proof
for exploring the dynamic behavior of
a specification.

. Integrated Yormal Methods
Process Model

The authors’ parent section (Software
Product Assurance) is responsible for
implementing product assurance
programs on software subsystems at
the Jet Propulsion Laboratory. Its role
isto provide services and techniques
to effectively mitigate risk during the
development and maintenance of
software subsystems. Within this
section the authors are members of the
Applied Research Group which
evaluates new techniques and tools
which support the objectives of
improved software quality, then
provide technology transfer courses
and materials to allow projects to
easily adopt the improved techniques.
Currently Formal Methods and Object
Oriented Design are key areas of
activities. This section discusses how
Formal Methods can be integrated into
an ongoing software development
process. The concurrent engineering

w



role of the Software Quality Assurance
organization a natural organizational
home for these techniques.

lfigurc 2 shows a simplified picture of
how software requirements arc
traditionally developed, The principal
products developed include a textual
description of the requirements, This
usually includes English “shall”
statements that describe high-level
requirements or obligations the
resulting software must satisfy. in
addition, some projects usc various
diagraming techniques to illustrate
the structure of the requirements and
to show their inter-relationship. These
can include data flow diagrams, entity-
relationships diagrams, state charts,
and object diagrams. While these
provide insight into the inter-
relationships of requirements, they are
usually a secondary consideration at
this phase. HlighLevel Test Plans arc
developed during this phase to
provide guidance for subsystem-level
tests. Product assurance activities at
this phase that have proven to be
effective include Fagan-style
inspections of both the textual
requirements and the High Level Test
Plan. These inspections arc conducted
on segments of these two documents
as they arc being dcvclopcd(’. After
the development of these documents
(or significant segments of these
documents in an incremental build life
cycle), a baseline review is conducted
prior to approval for the beginning of
lower level engineering product
development. While this process has
been effective for many projects, there
arc still significant opportunities for
improvement. Current quality
assurance approaches have the
following limitations:

. These techniques arc mostly
manual, thus making the finding
of errors highly dependent upon
the skill and diligence of the
inspector and review teams.

. liven though a very high number
of defects are found using these
techniques, their prevalence and
density indicate that there exist
many errors which remain
undiscovered.

.Some NASA projects have
employed this approach to reach a
quality ceiling on critical software
subsystems.  Therefore innova-
tions are neededto push the
project on toward new quality
goals.

Figure3 shows additional techniques
that the authors and their associates
have been investigating through
demonstrations on critical NASA
software subsystems. Thesc additional
interrelated techniq Lies include
Structure modeling (in particular, the
approach described by the Object

Oriented Modeling OMM10) and
formal specification (c.g., HOL4 and
]’VS]'). The quality assurance aspect

of these engineering products are
indicated by the attached gray boxes.

Structure modeling provides a
graphical view of the inter-
relationships between req uirements
and, in the case of OMT models, the
requ i red object model, dynamic
model, and functional model. The
graphical depiction of the desired
system is easily reviewable through
Fagan-style inspections. These
inspections include project team
members, who have a vested interest
in the engineering product under
review. Structure models can be used
as a starting point for both
specification animation and formal
specifications. The arrows leading in
from the edges indicate that,
depending on the criticality of the
subsystem, the current knowledge of
requirements, and the resource of the
project, any one of the three techniques
potentially can be developed after the
textual description. Creation of a
formal specification requires a



translation of the requirements into a
rigorous logical model supported by a
formal specification language. When
this technique is used, the formal
specification becomes one of the
primary engineering products of the
requirements phase. The expected
benefits from moving to a formal
specification include 1) a reduction in
ambiguity in the formal specification
as compared with the textual
description, 2) the variety and formal
logical rigor of the quality assurance
techniques which can be applied to the
formal specification, and 3) the ability
of the formal specification to
significantly reduce the scope of the
test plan without compromising its
quality. Formal specifications support
such automated analysis techniques as
consistency checkers, steerable
theorem provers, and proof checkers.
Peer review inspections are still
needed to verify that the formal
specification faithfully represents the
system that was intended.

Formal specifications require training
and skills beyond most software
engineering techniques. For this
reason, we plan to use specialized FM
tcams to provide the development and
checking of formal specifications, and
to make this expertise available to
project developers.  in such an
arrangement, only a reading
knowledge of formal specification
languages is required for most of the
software development team.
Furthermore, specification animation
provides insight into the requirements
which is not possible through
structured modeling or formal
specification alone. Specification
animation allows the requirements to
be viewed dynamically by supplying a
program that demonstrates the
execution of the high level
functionality of the subsystem under
study. Specification animations also
provide a rcasonableness check On the
formal specification by providing the
project team with an executable
representation of the requirements.

This animation scrves as a high-level
prototype which is built to confirm the
description of the subsystem, rather
than as a low-level demonstration of
the feasibility of a particular feature.
The authors have found specification
animation to be very useful in both
forward as well as reverse engineering
situations, and details of example
usagc is given in the nextsection,

1V._Casc Studies

in this section, we present a case study
of how FM was used in a forward
engineering scenario for the study of
the floating, point math for the MIl.-
STD-1750A micro processor, and in a
reverse engineering sense for a generic
spacecraft guidance, navigation and
control (GNC) function.

A, MIL-STD-1750A Floating Point

This section reports on some of the
results from a study of the floating
point arithmetic of the MII,-SI'l)-
1750A microprocessorlz.'l“he purpose
of the study was to generate a formal
specification of the definition of the
floating point operations from the
MIL-STD document, and to then
explore the formal specification for
internal logical consistency and
ambiguity which could lead to
incorrect implementations of the
standard in silicon. The specification
language used was HOL (Higher-
Order logic), a public domain tool
maintained by Cambridge University
(UK) 4

Consideration of addition,
multiplication, and division found no
serious problems, but the definition of
subtraction was found to be
ambiguous. The definition from the
MIL.-STD for floating point subtraction
is as follows:

The floating point Derived
Operand, DO, is floating
point subtracted from the



contents of registers RA and
RA+ 1. The result is stored in
registers RA and RA+I,

‘I”he process of this operation is
defined as follows: the
mantissa of the number with
the smaller algebraic exponent
is shifted right and the
exponent incremented by one
for each bit shifted until the
exponents are equal. The
mantissa of the DO is then
subtracted from (RA,RA+1).
If the difference overflows the
24-bit mantissa, then it is
shifted right onc position, the
sign bit restored, and the
exponent incremented by one.
If the exponent exceeds 7F hex
as a result of this increment
operation, overflow occurs
and the operation is
terminated. If the sum does
not result in exponent
overflow, the result is
normalized. If during the
normalization process the
exponent is decremented
below 80 hex, then underflow
occurs and a zero is inserted
for the result.

The essentials of the resulting HOL
specification for 1750A single precision
floating point subtraction are
contained in the following HOL
definitions.

let float_axiom =
define_type ‘float _axiom’
‘float= FLOAT word24
words8’ ; ;

let spf_sub =
new definition
(‘ spf_sub_def",
"spf_sub (a :fl oat)
(b:float) =

let. argnorm =
({(spf_isnormalized a)
/\ (spf isnormalized
b)) in

Jet ai = (spf_to ispf a)
in
Jet bi =(spf to ispf b)
in
let bitc =

(ispf_ twoscomp bi) in
let azero =

{spf_equals a
spf zero) in
lJet bzero =

(spf_ equals b
spf zero) in

{((~argnorm) =>
(SPFREC ARB F F ‘1" F)|
(( bzero) =>
(SPFREC a FFF EY |
(ispf_ do_acid ai
bi_te)))") s

The first definition establishes the type
“flea t“ as a record composed of a 24 bit
mantissaand an 8 bit exponent. The
second defines the single precision
floating point subtraction operation
"spf_sub”.  The series of six “let”
statements within "spf_sub" establish
the value of several intermediate
results. To interpret these statements,
note that HOI. expressions follow a
lisp-like syntax. A parenthesized list
of symbols indicates a function call,
with the first element in the list the
name of the function, and the
remaining symbols the arguments to
the function. "argnorm” is a Boolean
indicating whether or not the original
arguments “a” and “b” are normalized.
"ai" and “hi” represent extended
precision arithmetic versions of the
original arguments’”a”’and “b”. "bi_tc"
represents the two’s complement of
“hi” in extended arithmetic. "azero"
and "bzero" arc Booleans which
indicate whether or not “a” and “b”
respectively arc equal to zero. The
final three lines of "spf sub”
implement an  “if-then-else” which
constructs the return value for the
function. If arguments arc not
normalized, the result is undefined,
else if “b” is equal to zero, “a” is
returned, else the value of “a” added to
the two’s complement of “b” is
returned.



The final step in the definition of
"spf_sub" implicitly assumes that “a”
added to the negative (two’s
complement) of “b” produces the same
value as “b” directly subtracted from
“a”. However, counterexamples can be
found with some pencil-and-paper
analysis.  An examination of the
highlighted passages above from the
MIL-STD document reveals that the
standard is incomplete or ambiguous
on the specific subtraction algorithm to
usc. Since two of the known possible
choices -- -*“add-the-negative” and
“direct subtraction” -- can be shown to
give different results for some pairs of
identical operands, the possibility
exists that this ambiguity couldbe
propagated into distinct
implementations of the standard in
silicon. Although most fabricators are
aware of this ambiguity and have
resolved it in a sensible fashion, the
exercise demonstrated how quickly
fundamental questions about
completeness and consistency of a
specification can be grasped once the
specification is stated formally. In this
study, most of the interesting
conclusions were obtained by
subjecting the problem only to a
moderate level of formalism (i.e., type
checking and specificat ion ani mat ion,
but no proofs).

B. Spacecraft GNC

This section presents the results of a
reverse-cnginccr-ing study of a generic
spacecraft GNC (guidance, navigation,
and control) subsystem. The goal of
the study was to derive requirements
for a system supported only by
implementation-level external
documentation. From a quality
assurance perspective, the goals of the
study were:

¢ to understand what were the
important global properties (i.e.,
the true requirements) which were
obscured by implementation detail

to produce support products that
would assist in the task of bringing
personnel new to the project up to
speed

to produce support products that
would assist in the task of
determining global effects of
modifications (maintenance)

to provide an alternative to the
system's current maintenance
approach which uscs heavy
manual analysis

The problem statement for the GNC
function is, given a commanded
direction along three rotation axes
(roll, pitch, and yaw), determine the
best combination of jets to fire to
satisfy the command. lets arc
distributed about the body of the
spacecraft and fire infixed directions.
A table of precomputed values which
describe the expected rotational effects
from individual jet firings is available
to the algorithm.

An example of the documentation for
one subfunction is shown in figure 4.
‘I’his function computes four table
lookup indices (Index 1 throughlndex
4) into a table of jet rotation
characteristics as a function of the
input GNC system mode, represented
by the four inputs, mode 1 through
mode 4, and predefined integer
constants 1'1 through 1’8. Dotted lines
serve as switch controls, causing in
effect the slanted lines to be “thrown”
to the switch terminal that matches the
value of the switch control. The figure
defines its function with precision, but
not with clarity. Most importantly,
there is no structure to the figure that
suggests any rationale for why the
function works the way it does.

In the absence of other information,
the best strategy for beginning the
process of discovering the lost
rationale of such functions was to
write a specification animator to mimic
the function’s behavior according to
the available documentation. This



strategy was straightforward to
implement for the function in question
since the ranges for allinputs were
discrete and relatively small, making
cxhaustive testing, feasible.  From
studying the values of the output
indices, a more obvious structure
quickly became apparent. This new
structure is presented in flowchart
form in figure 5, and in tabular form in
figure 6.1t was shown by exhaustive
testing, Lo be equivalent to the original
documentation (figure 4).  From
figures 5 or 6, the underlying logic of
the function becomnes clearer. First, the
actual system modes can  be
1ccognized from the values of the
inputs, Mode 1 through Mode 4. The
flowchart implies that thercare two
major modes (Mode 4 = on and Modce
4 = off, whichwe will referto as "4on”
and “4 off”). Mode “4 on" is further
broken downinto3submodes,"3 Oil”,
"3 off /2 on", and “3 off/2 off”, while
major mode “4 off” has 110 submodes.
Finally, the flowchart reveals that
assighment of values toindices 1 and
? is decoupled from the assignment of
valuesto Indices 3and 4.

This example illustrates how in a
reverse engineering task, specification
animators motivate the discovery of
truc underlying structure which may
not be readily apparent from lower-
level detail. If the exact needs of the
task do not demand the highest levels
of formal logical rigor, the flowchart or
table could be a sufficient final
product. If more formalism is
required, the flowchart or table could
then be translated into a formal
specification language, where it could
be subjected to automated deductive
analysis. In the latter case, note that
specification animators still play an
important intermediate role. 1t is
possible to translate the original figure
(figure 4) directly into a formal
specification language, skipping the
specification animation stage, but
doing, so misses the opportunity to
reexpress the function specification to
expose the logical essence of what the

function does. The automated logical
analysis of the specification has  a
much betler chance of producing
useful results if the specification itself
elucidates rather than obscures this
CSSCNCe,

v. conclusions

Based on these pilots, the JPL
expetience supports the view that FM
is rcady for critical software
applications in space applications. We
have described concrete process steps
which were evolved in the course of
the JP’L. pilot studies to allow FM to be
introduced into existing development
and quality assurance processcs,
without the need to significantly
increase up-front costs nor {o
extensively train large groups of
software engineers. We have also
ninvestigated the expansion of the FM
idea  to include high-level
requircments  simulators  or
“requirements animators” and have
proposed the integration of formal
methods  with  object oriented
diagrams. The use of animators
facilitates a process in which quality
assurance personnel provide M
expertise and development personnel
provide application domain expertise.
Animators then become a useful
medium for communication of results
of FM analysis between personnel
who need the results but who need not
be experts in FM.  However, our
experience with the link between
Object Structure Modeling and Formal
Methods is far more preliminary and
we can not confirm or reject the
uscfulness of this addition at the
requirement phase at this time.  This
expetrience suggests that quality
assurance organizations could be a
natural home for FM in many high
reliability systems  development
cnvironments,
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